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Abstract

Proposing a canonical representation, valid for analysis and

attempts to prove the circulator’s figure of merit to be invariant
and cyclic-symetry -ding.

I.Intr~uction

In a microwave c cmnun.ication system, circulator

is an @mrtant device which can separate an incident

signal and a reflected one, and so it is utilized in

a refection type of amplifier and phasemxhlator,
a switch and even as a buffer when one port of it Ls

terminated to a dmuny load.

A lossless reciprocal compensating network is

often employed in order to transform an “actual” cir-
culatm which is alrmst imperfect, into an “ideal”

one which has an optimum performance, i.e., perfect

matching and perfect isolation.

Conventionally, the ~sating network for

the circulator is co~sed of three identical 2-pint
reactance networks shown in Fig.l(a). Hcwever, we

will propxe a mre general compensating network
which is a 6-pint network and is shown in Fig.l(b)r

and study the ability of the conpnsating network.

From these investigations, an invariant nmber proper

to the circulaimr will be found to be an suitable
figuxe of merit for the circula+mr performance. Fur-

therermre, the camnical form and tie general form of
the circulator, valid for analysis and synthesis, can

be obtained.

In addition, we will investigate the ability of

the conventional ccxnpsnsating network and the degra-

dationby the losses in the cmnpensationg nstwork.

In this paper, discussions are concentrated on

the performance at a specified frequency.

11.Iassless reciprocal transformation

with preserving a cyclic-synnnetry

At first, we will mnsider the properties of

the compensating network. Let us ass- a tandem

connection of two 6-prt reactance networks with pre-
serving a cyclic-synm+ry shown in Fig.2. A network

preserving a cyclic-synnrentry has a following scatter-
ing matrix.

~ij.R=R~~j (i.,j=l ,2) (1)
where,

f+: 1 (2)

and ~ij are the 3x3 submatrices of ~ .

~=[::, :;] (3)

/

On the other hard; the lossles;ness and the recipro-
city of the network means that

(4)

(5)

res~ctively. The bar and t denotes complex con-

jugate ad transposition of the matrix, respectively.
E is a unit matrix.

synthesis, of circulator, the paper aleo
under an arbitraq -lossless reciprocal

It will be shown after algebraic manipulation

that the resulting 6-pint netvmrk has the sarm chara-

cters as the individual networks, i.e. , the lossless-

ness, the reciprocity and the cyclic-synmietry. I@re-
over, the “unit” network (not unit matrix) and the “in-
verse” network (mt inverse mtrix) with respect to
the operation of “tandem connection”, which are loss-
less and reciprocal and preserve a cyclic-symnetryr
can always exist uniquely. These explicit expressions
are aiven as follows:

(6)

Therefore, the set of 6-pxt compensating net-
tmrks can be said to be the “group” with respect to

tanda connection.

111. Invariant of ~CliC-SP@ 3-pint
network under lossless reciprocal

and cyclic-synn@xy transformation

Because of the cyclic-symetry in the given cir-

culator ad the compensated circulator, these 3-pint

ne+morks can be decomposed into three “eigen” l-pint
networks. (See Fig. 3) Therefore, the transformation

~: ~+~ can be aLso decomposed into three transfor-

K%
mations ~K: ~ + S (k= (),~,z), where S and S means the sca-

ttering matrix of the given circulator and the corOpen-
sated circulator, respectively, and the quantities with

superscript 0,1 and 2, means the one of “co-phase”,
“clcckwise” and “anti-clockwise” eigen vector, res~c-

tively.

The reciprocity of ~ restricts the eigen values

(8)

As a result, the transformation of clockwise
eigen excitation is shown to lx? the same as that of
anti-cloctiise eigen excitation.

Furtheremre, the losslessness of ~ leads to
a conclusion that three individual transformations

Xk (k=0,1,2) are also lossless.

Frcm these facts, the reflection coefficients
of the given circulator for clockwise ad anti-clock-
wise excitation, S$ and ~2 , respectively, must k

trarsf ormed by the identical lossless transformation;
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( K=I,2)
IQWakami2 ad Kurokawa et. al.3 shcw that the

following quantity is invariant under these transfor-
IrEltions .

1s’-s21 15’-F’I
1~1=~ (’m) (lo)

On the other hard., the transformation of co-

phase excitation is itiependent of the other two

transformations . Thus, m is the only invariant of

the circulator.

IV. Camnical form ard general form
of circulator

Perfect circulator action which m-ns perfect

matching ard ~fect isolation, will be obtaired if

the following two conditions amng three eigen ref -
ledion coefficients SK (k=O, 1, 2) are satisfied.

S2. S!LU s’=so~

where, w= exp(j2W3)

(11)

In such a case, the scattering matrix of 3-pxt net-

vmrk is of the form given by (12) .

Then, the question whether we can always trans-

form an _fect circulator into a ~fect one by a
suitable compensating network or not, will be rised

mturally. The answer to this question is given by
Theorem 1.

[Theorem 1] we can always transform an inpxf ect
circulator intc a ~rfect one by a suitable ccxq?en–
sating 6-pxt network and its transmi ssion coeffi-
cient is determined by only the given circulator but
does rot depend on the _nsating network.

(Prcof ) The restriction on the three transformations

~K (k=0,1,2) is only Eq. (10). So, let us assume
that the cord.ition (11) can be satisfied. Eq. (11) is
substituted into EQ. (10) ~

~z= Js’- w- Is - S’lz 3@12

I 1-s’”s212IJ-WW=J tl~~~+l~f (13)

From (13) , the solution to 1312 equal to or less than

unity, is always gained uniquely.

~ -jm(=d’)(14,
,3,2- %nl-1

We can, therefore, conclude that an @ecf ect

circulator can & always transform into a ~rfect

one by a suitable compensating network ad ~ given
by (14) is also invariant, because m is invariant and

a is a mmotonic increasi~ function of m. In other

tmrds, the transmission coefficient is determined by
only the given circulator.

Such a perf @t circulator will be referred to

aa a “camnical form” of circulator. I%3reover, the

following corollary is easily proved, because the in-

verse of any cxnnpensating network always exists.

[Corollary] 7m actual @rfect circulator can be
represented by a parastic reactance part and a psrf ect
circulator part shown in Fig. 4.

We shall call this representation a “general
form” of circulator. Such a representation is valid

for analysis ami synthesis of the circulator.

V. Figure of merit associated with circulator

Next, we will expose that ~ is a suitable figure
of merit of circulator.

[Len?na] n (22) circulators with equal figure of
merit 0( , are inbedded into 3 (n+l ) -pint reactance ret-
work preserving a cyclic-symmetry. The figure of merit

of the resulting circulator is demted by at.

1) For arbitrary choice of the transforming n?twork, at

can mt exceed (% .
2) ~ a proper choice of the transforming network, tit

can assme arbitrary value in the interval [O, ~ 1.

(Prcof ) We will here employ an impedance matrix instead

of a scattering matrix for the convenience.
‘i’he transforming (n+l ) -pert netvmrks of clockwise

and anti-cloctiise excitation, [z I ] ad [ 22] are loss–
less but not reciprocal in general, however, [ z~ ] is a

trans~sition of [22] .

[z’]=[zqt
The losslessness is reflected in the form;

(15)

(16)

(17)
Hence, the transformed eigen impedances of clockwise
and anti-cloclwise excitation are given as follows:

(17)

(18)

Because [~] is a skew Her’mite matrix, all its eigen
values are pure imaginary mmbers.

(19)

where, [u] is a unitary matrix. Fran (17) ad (18) ,

(23)

For N is a 11’Qnotonic increasing function of m,

Nkmmver, it is easily shown that ~t can assune

arbitrary mmber in the interval [O, O( ] , by chcosing a
suitable transforming network.

[Corollary] Ey imbedding twc circulator knth figures
of merit O( into 9-~rt lossless reciprocal network pre–
serving a cyclic-symnetry, it is always Wssible to
synthesize a circulator with figure of rrerit o(t by a
pro~r choice of transforming 9-FOrt, where O&ti’<M
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Using the akove 1,~ and its ~rollary, we may
easily derive the f ollwing thecmm.

[!IheOrem 2] If we inked n circulators with figure of

merit tit , O(Z,..., Mn into an 3 (n+l)-port reactance
network to synthesize an circulator, its figure of

mrit O(Z satisfies the following inequality.

0(+s 4 Max(dlJdl,”’’,dJ’) (25)

(proof) kt i%x(~l,..., dn) be dmt~ by 0( . We

can synthesize n cmculators ~~, . . . . &each using two

circulators with figue of merit a , 2n circulators in
all. Therefore, the resultant circulator mentioned in
Theorem 2 can be synthesized using 2n circulators with
figures of merit @. Fran the akove Mmna, ~c~t

exceedti.

From these theorems, the manimg of figure of

merit will k understmd. nme clealy. In a sense, a

group of circulators of pcor figure of merit can not
substitute for an circulator of high figure of merit.

VI .Conventional ccmpnsating network

An ability of a conventional ccmpensati~ net-

wwrk will be discussed here. The conventional one
ccnnpsed of three 2-prt reactance network correspmds
b a special case of the 6-~rt one propsed here. We
will discuss the case where the given circulator is

lossless, firstly, ti then the case where the circu-
lator is lossy.

For lossless circtdatir

Three eigen reflection coefficient are trans-

formed by the compematimg network.

3 =g,,t(K2)wo-L2sK) (26)

Therefore, the scattering matrix of the ccmpnaa@

circulator has the following matrix elements.

~, =Z,, +@2Y{SY(1-M7+$% t-hs’JW(i-ZzS2}/3

(28)

On the other ‘&d, the condition, s~~ =0 reduces to

4%=-So +(NS*W9 (29)
S’?y @ t yqpw’+S’sa

Once .& =0 (S* =0) is establish, perf et ma~n9 (

~, =0) will be guaranteed., because of the losslessness

of the ccmpnsated network.

It can h verified that ~~ satisfying (28) or

(29) has an aqlituie le ss than unity for arbitrary

angles of so, S , and S2, onL7y except the degenerating

cases. So, we can say that a lossless nonreciprocal

3-~rt netwxk can be transformed into an ideal circu-
lator by a suitable conventional ~ating network.

!Ihe abve conclusion, hcwever, cannot be obtained for
a lossy 3-port network.

For 10SSY circulator

and the differences of their phase angles must be equal

ti 120”. Arbitrary three pints in the unit circle

can not always be transformed into the points which are

placed to realize a ~rfect circulator action, because
the circle passing through the arbitrary three pints

will not always lie in the tit circle. Therefore,

it can be concluded that a loss nonreciprmal 3-prt

network can not always be transf ormd into a perfect

circulator by a conventional conpmsating network. On
the other hand, a general 6-gnrt c-nsating network
can always transform a 10SSY 3-pwt network into a per-
fect circulator.

VII. Effect of loss in the conpnsating network

Here we will discuss the effect of pssible loss
in the compensating network. The loss may~ distri-

butes in the compensating netwmk ,but it. can be express-

ed by tit resistors ,concisely, i .e., a 10SSY 6-prt

netvmrk is equivalent to a lossless 12-pxt network of
which six prts are terminated by six unit resistors?

A network compsed of three unit resistors can

be thought as a circulator with figure of merit ~ =0,
so that it is concluded by Theorem-2 that a lossy com-
pensating retwork may diminish the figme of merit of
the circulator to be comgxmaated. Therefore, there
is no merit in employing a 10SSY ccqensating network.

VIII. Conclusion

The conclusions are s umnarized here.

1) A 6-@rt mmpem.sating network for circulator is

propxed

2) IW invariant of a cyclic-symretry 3–pxt netmrk

under lossless reciprocal and cyclic-symnetry Mding
is f ourd. by means of eigen veclzd excitation.

3) The invariant can be employed as a figure of mxit
of circulator.

4) Ca.mnical and general form of circulalmr, varid for
analysis and synthesis, is provided.

5) An ef feet of loss in the compasating network is
discussed.
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The transformation given by (26) will map the

region interior to the unit circle centered at the ori-
gin.-of the ccnnplex plane into the region interior to
the unit circle in the other cxmplex plane. In order

to realize a perfect circulator action, three eigen
reflection coefficients must have the same anplitude
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Fig. 1 A compensating network
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Fig.2 A tandem connection of two reactance 6–port network.
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Fig.3 Decomposition into three “eigen” networks.
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Fig.4 A general representation of circulator.
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Fig.5 Synthesis of circulator.
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Fig.6 A 10SSY compensating network.
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