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Abstract

Proposing a canonical representation, valid for analysis and synthesis, of circulator, the paper also
attempts to prove the circulator's figure of merit to be invariant under an arbitrary lossless reciprocal

and cyclic-symmetry imbedding.

I. Introduction

In a microwave communication system, circulator
is an important device which can separate an incident
signal and a reflected one, and so it is utilized in
a refection type of amplifier and phase-modulator,

a switch and even as a buffer when one port of it is
terminated to a dummy load.

A lossless reciprocal compensating network is
often employed in order to transform an "actual" cir-
culator which is almost imperfect, into an "ideal"
one which has an optimum performance, i.e., perfect
matching and perfect isolation.

Conventionally, the compensating network for
the circulator is composed of three identical 2-port
reactance networks shown in Fig.l(a). However, we
will propose a more general compensating network
which is a 6-port network and is shown in Fig.l(b),
and study the ability of the compensating network.
From these investigations, an invariant number proper
to the circulator will be found to be an suitable
figure of merit for the circulator performance. Fur—
theremore, the canonical form and the general form of
the circulator, valid for analysis and synthesis, can
be obtained.

In addition, we will investigate the ability of
the conventional compensating network and the degra-
dation by the losses in the compensationg network.

In this paper, discussions are concentrated on
the performance at a specified frequency.

II.Ilossless reciprocal transformation
with preserving a cyclic-symmetry

At first, we will consider the properties of
the compensating network. Iet us assume a tandem
connection of two 6-port reactance networks with pre-
serving a cyclic-symmetry shown in Fig.2. A network
preserving a cyclic-symmentry has a following scatter-
ing matrix.

ZijR=R- By wj=1.2 "
where, 010
R=[3 4] @
and Zt_j are the 3x3 submatrices of )\ .
Z:u . le (3)

Z= X, Zzz}

On the other hand, the losslessness and the recipro-
city of the network means that

itfl = E (4)
Zt=3 5)

, respectively. The bar and t denotes complex con-
jugate and transposition of the matrix, respectively.
E is a unit matrix.
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It will be shown after algebraic manipulation
that the resulting 6-port network has the same chara-
cters as the individual networks, i.e., the lossless-—
ness, the reciprocity and the cyclic-symmetry. More-
over, the "unit" network (not unit matrix) and the "in-
verse" network (not inverse matrix) with respect to
the operation of "tandem connection", which are loss-
less and reciprocal and preserve a cyclic-symmetry,
can always exist uniquely. These explicit expressions
are given as follows;

_[0 E]
Z\E - [ EO
— Za( Z’uZ:I-Zu'&I‘)" Zz:(&;_gu-‘- Eu n—.)_'
| B BT L BR)” (S T - DT
Therefore, the set of- 6-port compensating net-

works can be said to be the "group" with respect to
tandem connection.

()

(7)

III.Invariant of cyclic-symmetry 3-port
network under lossless reciprocal
and cyclic-symretry transformation

Because of the cyclic-symmetry in the given cir-
culator and the compensated circulator, these 3-port
networks can be decomposed into three "eigen" l-port
networks. (See Fig.3) Therefore, the transformation

Z : s-—»§' can be also decomposed into three transfor-
mations Z‘: kY “—)?‘(k:O,I,Z), where S and S means the sca-

ttering matrix of the given circulator and the compen—
sated circulator, respectively, and the quantities with
superscript 0,1 and 2, means the one of "co-phase®,
"clockwise" and "anti-clockwise" eigen vector, respec-
tively.

The reciprocity of Z restricts the eigen values
of sukmatrices Z" ,Z,2 'Z?-I and 822 which are deno-
K \
ted by Z“, Z‘; , Zz'? and Zzg , respectively.

Zh=Ed, Zn =%
Z,Z=Zg, Z-'fZ’f., Z|§=ZZ‘| ®

As a result, the transformation of clockwise

eigen excitation is shown to be the same as that of
anti-clockwise eigen excitation.

Furtheremore, the losslessness of 32 leads to
a conclusion that three individual transformations

KK (k=0,1,2) are also lossless.

From these facts, the reflection coefficients
of the given circulator for clockwise and anti-clock-
wise excitation, §' and §2 , respectively, must be
transformed by the identical lossless transformation;



ZnS*)
(K=12)

Kawakami2 and Kurokawa et. al.3 show that the
following quantity is invariant under these transfor-

S '78 Xn "’le le S/“

(9)

mations. ~ o~
'SI_S‘J| _ ISI_SQ' (=m) L
=852 )1-§. .32l ao

On the other hand, the transformation of co-
phase excitation is independent of the other two
transformations. ‘Thus, m is the only invariant of
the circulator.

Iv.Canonical form and general form
of circulator

Perfect circulator action which means perfect
matching and perfect isolation, will be obtained if
the following two conditions among three eigen ref-
lection coefficients S" (k=0,1,2) are satisfied.

S?:S!w S':So‘w

W= exp(j2r/3)
In such a case, the scattering matrix of 3-port net-
work is of the form given by (12).

0s0
S -

00 S
s*p 0

Then, the question whether we can always trans-

form an imperfect circulator into a perfect one by a

suitable compensating network or not, will be rised

(11)

where,

12)

naturally. The answer to this question is given by
Theorem 1.
[Theorem 1] we can always transform an imperfect

circulator into a perfect one by a suitable compen—
sating 6-port network and its transmission coeffi-
cient is determined by only the given circulator but
does not depend on the compensating network.

(Proof)

ZK (k=0,1,2) is only Eq.(10). So, let us assume
that the condition (11) can be satisfied. Eq.(ll) is
substituted into Eq. (10) 2 —~ 2

2_ S~ S22 IS - S’I ___:3|_S_‘__ 13
SIS R |1-8 Sl [+ISF IS ¢
From (13), the solution to ls ]z equal to or less than
unity, is always gained uniquely.

~ 3/pa —~ ’ 2.
lS||2= /"z'z J - (3/"12 ’)2’_|(=“2)(l4)

We can, therefore, conclude that an imperfect
circulator can be always transformed into a perfect
one by a suitable compensating network and ¢4 given
by (14)is also invariant, because m is invariant and

o is a monotonic increasing function of m. In other
words, the transmission coefficient is determined by
only the given circulator.

The restriction on the three transformations

Such a perfect circulator will be referred to
as a "canonical form" of circulator. Moreover, the
following corollary is easily proved, because the in-
verse of any compensating network always exists.

[Corollary] An actual imperfect circulator can be
represented by a parastic reactance part and a perfect
circulator part shown in Fig.4.

We shall call this representation a "general
form" of circulator. Such a representation is valid

for analysis and synthesis of the circulator.

v.Figure of merit associated with circulator

Next, we will expose that & is a suitable figure
of merit of circulator.

[Lemmal] n(22) circulators with equal figure of
merit (X , are imbedded into 3 (n+l)-port reactance net-
work preserving a cyclic-symmetry. The figure of merit
of the resulting circulator is denoted by (it .

1) For arbitrary choice of the transforming network, O
can not exceed .

2) By a proper choice of the transforming network, ™%t

can assume arbitrary value in the interval [0,K].

(Proof) We will here employ an impedance matrix instead
of a scattering matrix for the convenience.

The transforming (ntl)-port networks of clockwise
and anti-clockwise excitation, [z'] and [z2] are loss—

less but not reciprocal ingeneral, however, [z'] is a
transposition of [z2].
t

21=[2% (15)

The losslessness is reflected in the form;
Jxo Gl

(2')= e
where t _

’ [2]*[31 “D 17)

Hence, the transformed eigen impedances of clockwise
and anti-clockwise excitation are given as follows;

'z\:; 1Xo — ai{ ?" ?.E)"'- Elt (17)

Fo= iXo O R+ &EN T (18)

A . . : .
Because [z] is a skew Hermite matrix, all its eigen
values are pure imaginary numbers .

@0 0,

(19)

where, [u] is a unitary matrix. From (17) ard (18),
~ VG Az, Xik+d) =
Z- 2 =22, Y . 0 b*
O Wurnigug| >
where, lb= QIU , and , ot
VisEKws 0 L

Z* %;.=(z| *iz)b " =
0 Ve
Therefore, the invariant of the synthesized circulator

can be calculated.
N AL I)l'lb B+t )l

(22)
2% | 1B +T IX WA To Kt )l
Considering g, = 23 and SEhwartz's inequality,

Mme § M @3
For o is a monotonic increasing function of m,
e s (24)

Moreover, it is easily shown that ole can assume
arbitrary nuwber in the interval [0,04], by choosing a
suitable transforming network.

[Corollary] By imbedding two circulator both figures
of merit of into 9-port lossless reciprocal network pre-—
serving a cyclic-symmetry, it is always possible to
synthesize a circulator with figure of merit o/ by a
proper choice of transforming 9-port, where 0£O(‘{oA
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Using the above lemma and its corollary, we may
easily derive the following theorem.

[Theorem 2] If we imbed n circulators with figure of
merit o, ™z,..., {n into an 3(nt+l)-port reactance
network to synthesize an circulator, its figure of
merit o{4 satisfies the following inequality.

“'t S Max (0(',0‘1, vy, d” ) (25)

(Proof) Let Max(ofi,--.,0n) be denoted by & . We
can synthesize n circulators oh,...,9neach using two
circulators with figure of merit X , 2n circulators in
all. Therefore, the resultant circulator mentioned in
Theorem 2 can be synthesized using 2n circulators with
figures of merit X. From the above lemma, fgcannot
exceed 4.

From these theorems, the meaning of figure of
merit will be understood more clealy. In a sense, a
group of circulators of poor figure of merit can not
substitute for an circulator of high figure of merit.

VI.Conventional compensating network

An ability of a conventional compensating net-
work will be discussed here. The conventional one
composed of three 2-port reactance network corresponds
to a special case of the 6-port one proposed here. We
will discuss the case where the given circulator is
lossless, firstly, and then the case where the circu-
lator is lossy.

For lossless circulator

Three eigen reflection coefficient are trans-—
formed by the compensating network.

g K= Z..*(Z’nz)z's'y(l "ZZ?-SK) (26)

Therefore, the scattering matrix of the compensated
circulator has the following matrix elements.

&, =T HT2 PSY-EaSY +§ 1 TuS ] 4571~ /3
SaATPlsok -Euas) + W T 0SS/ (27
Sy AT (15 1S 1 TS )T 7850} 3

If the condition § =0 (perfect isolation) is satis-
fied, ¥n will be solved by (27).

Ta= - S$o+w 8 w?s2

2 segtut+§°.82w T S8

On the other hand, the condition, §;2 =0 reduces to

Z =__S°+w’S‘+wSa (29)

by 22 SS'wt SaS2uwE+ SIS
Once §i3 =0 (S5 =0) is established, perfect matching(
5w =0) will be guaranteed, because of the losslessness
of the compensated network.

(28)

It can be verified that ¥y satisfying (28) or
(29) has an am[ilitude less than unity for arbitrary
angles of §°,S*, and §2, only except the degenerating
cases. So, we can say that a lossless nonreciprocal
3-port network can be transformed into an ideal circu-
lator by a suitable conventional compensating network.
The above conclusion, however, cannot be obtained for
a lossy 3-port network.

For lossy circulator

The transformation given by (26) will map the
region interior to the unit circle centered at the ori-
gin-of the complexplane into the region interior to
the unit circle in the other complex plane. In orxder
to realize a perfect circulator action, three eigen
reflection coefficients must have the same amplitude
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and the differences of their phase angles must be equal
to 120°. Arbitrary three points in the unit circle
can not always be transformed into the points which are
placed to realize a perfect circulator action, because
the circle passing through the arbitrary three points
will not always lie in the unit circle. Therefore,

it can be concluded that a loss nonreciprocal 3-port
network can not always be transformed into a perfect
circulator by a conventional compensating network. On
the other hand, a general 6-port compensating network
can always transform a lossy 3-port network into a per-
fect circulator.

VII.Effect of loss in the compensating network

Here we will discuss the effect of possible loss
in the compensating network. The loss maybe distri-
butes inthe compensating network,but it.can be express—
ed by unit resistors,concisely,i.e., a lossy 6-port
network is equivalent to a lossless 12-port network of
which six ports are terminated by six unit resistors?

A network composed of three unit resistors can
be thought as a circulator with figure of merit o\ =0,
so that it is concluded by Theorem-2 that a lossy com-
pensating network may diminish the figure of merit of
the circulator to be compensated. Therefore, there
is no merit in employing a lossy compensating network.

VIII.Conclusion

The conclusions are summarized here.

1) A é-port compensating network for circulator is
proposed

2) An invariant of a cyclic-symmetry 3-port network
urnder lossless reciprocal and cyclic-symmetry imbedding
is found by means of eigen vectod excitation.

3) The invariant can be employed as a figure of merit
of circulator.

4) Canonical and general form of circulator, varid for
analysis and synthesis, is provided.

5) An effect of loss in the compensating network is
discussed.
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Fig.6 A lossy compensating network.



